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Summary
In genetic association studies of an ordered categorical phenotype, it is usual to either regroup multiple categories of the
phenotype into two categories and then apply the logistic regression (LG), or apply ordered logistic (oLG), or ordered
probit (oPRB) regression, which accounts for the ordinal nature of the phenotype. However, they may lose statistical
power or may not control type I error due to their model assumption and/or instable parameter estimation algorithm
when the genetic variant is rare or sample size is limited. To solve this problem, we propose a set-valued (SV) system
model to identify genetic variants associated with an ordinal categorical phenotype. We couple this model with a SV
system identification algorithm to identify all the key system parameters. Simulations and two real data analyses show that
SV and LG accurately controlled the Type I error rate even at a significance level of 10−6 but not oLG and oPRB in
some cases. LG had significantly less power than the other three methods due to disregarding of the ordinal nature of the
phenotype, and SV had similar or greater power than oLG and oPRB. We argue that SV should be employed in genetic
association studies for ordered categorical phenotype.
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Introduction

Genome-wide association studies (GWAS) have successfully
identified many genetic variants that are associated with
complex diseases over the past decades (Sladek et al., 2007;
Welter et al., 2014). Many phenotypes studied in GWAS are
either binary or continuous. The logistic regression (LG) and
linear regression models are widely used to analyze binary
and continuous phenotypes while adjusting for the effects
of confounding covariates such as ancestry, age, and sex. In
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cancer GWAS, a considerable proportion of phenotypes are
either survival (Innocenti et al., 2012) or relapse (Yang et al.,
2012). The Cox proportional hazard regression model (Cox,
1972) and the Fine and Gray hazard rate regression (Fine
& Gray, 1999) are the standard methods to analyze survival
and relapse outcomes with adjusting for some confounding
factors such as ancestry scores, treatment arms, clinical risk,
or prognostic factors, respectively.

In cancer pharmacogenetics/pharmacogenomics, re-
searchers are interested in detecting genetic variations influ-
encing drug toxicity or efficacy. The key phenotype referred
to as the outcome could be multiple ordinal categories such as
dosing of drugs, adverse events scored on scales using ordinal
values (1–5) according to Common Terminology Criteria for
Adverse Events developed by the U.S. National Cancer In-
stitute (Ingle et al., 2010), and effect of treatment on disease
such as tumor response in which the metric of tumor size
is categorized as complete response, partial response, stable
disease or progressive disease (Wheeler et al., 2013). Further-
more, some ordered phenotypes may be defined by splitting
a measured continuous variable such as body mass index into
categories such as underweight, normal weight, overweight,
and obese. However, most of these may be generated due
to complicated unobservable or unobserved continuous vari-
ables such as the expression level of RNAs or proteins involved
in an unknown biological process or stimulated by external
environments.

For these ordered phenotypes, researchers often regroup
multiple categories into two categories of “cases” and “con-
trols” and then apply the standard LG model (Treviño et al.,
2009; Ingle et al., 2010). However, this method may lose
substantial power in that re-categorizing the phenotype does
not take the ordinal nature of the phenotype into consider-
ation (see section “Simulation Results”). The nonparametric
method of the Spearman rank correlation (Yang et al., 2009)
and the Jonckheere–Terpstra tests (Han et al., 2013), which
account for the ordinal nature of the phenotype, can be attrac-
tive methods. However, these methods cannot adjust for con-
founding factors. The parametric method of ordered/ordinal
logistic regression (oLG) model (Png et al., 2011) borrows the
basic idea of a standard LG regression model to avoid these pit-
falls. In the most popular models, for example generalized lin-
ear models (GLM), logistic approaches adopt a link function of
logit form, which brings many advantages. For example, the
first derivative and the second derivative of the corresponding
log-likelihood function are easy to compute, and the estimated
parameter can explain the odds ratio directly. Nevertheless, we
still believe that the logistic approach is sometimes overused.
Above all, fitting the response data with the logit link func-
tion cannot be justified in many practical applications. This

doubt has been confirmed in the case of a binary outcome for
which the probit method has shown better performance than
the LG method under nonasymptotic situations (low minor
allele frequency [MAF] and small sample size; Kang et al.,
2014). Both of these methods lose statistical power or cannot
maintain the type I error rate if the marker is rare and sample
size is small, due to their model assumptions and/or unstable
parameter estimation algorithm. Another parametric method
of the ordered probit regression method type can be used but
like oLG, its performance is problematic when the sample size
is small and the number of categories is large.

As for traditional system identification, the system input and
continuous system output are usually assumed to be accessi-
ble or known. However, in some cases we can only know in
which set the system output lies, but not the exact continuous
output information, which is called set-valued (SV) informa-
tion (Kang et al., 2014). To model the relationship between
system input and system output mathematically, a quantization
process is adopted to generate the SV system from the corre-
sponding continuous latent or unknown variable. SV system
identification (SVSI) was first investigated for sensor systems
(Wang et al., 2003). In contrast to the traditional system iden-
tification method, SVSI can estimate the model parameters
by SV information rather than precise output information. It
is technically more challenging, but appears in a wide range
of applications such as sensor networks and telecommunica-
tions (Nair et al., 2007; Wang et al., 2010). Finite impulse
response model is a class of typical linear system model and
can be used to approximate many actual physical systems.
As an important research branch of SVSI, the identification
of finite impulse response model with SV data attracts the
attention of many researchers and some related results have
been obtained (Godoy et al., 2011; Chen et al., 2012; Bi &
Zhao, 2014).

In this study, we propose a specific SV system model, which
can be considered as a finite impulse response system with
SV output. The model considers the categorizing process of
continuous phenotypes to model the relationship between
the ordered outcome and possible genetic or nongenetic ex-
planatory factors in GWAS or next-generation sequencing
(NGS) studies. We estimate the parameter of interest by an
SVSI approach and use a Wald test statistic for testing the null
hypothesis of no association between genetic variant and or-
dinal phenotype. We perform extensive simulation studies to
compare the type I error rate, the power and the compu-
tational cost of SV with those of the LG, oLG, and oPRB
methods. Finally, we apply the SV method to data on mini-
mal residual disease (MRD) in acute lymphoblastic leukemia
(ALL; Yang et al., 2009) and data from the Genetic Analysis
Workshop 17 (GAW17).
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Materials and Methods

Notations

Assume that we have a cohort of N individuals and that the
genetic polymorphism of interest is biallelic (e.g., single nu-
cleotide polymorphism [SNP]). The two alleles at an SNP
are denoted as A and a, where A is the minor allele and to-
gether they form three genotypes denoted as AA, Aa, and aa.
Suppose that observations (si, Xi, Gi), i = 1, 2, . . . , N are
available, where si is the ordinal disease outcome of individual
i; Xi = [xi1, xi2, . . . , xim]T is a vector of m covariates that
we need to adjust for (e.g., demographic or clinical variables);
and Gi = 0, 1, or 2 is the numerical coding corresponding
to the three genotypes aa, Aa or AA, respectively, for the ith
individual.

The SV Model

We propose a novel SV model in which the phenotype infor-
mation can be regarded as the SV observation of a continuous
latent variable:⎧⎪⎨⎪⎩

yi = f (Gi , Xi ) + e i ,

s i =
r∑

k=0
k · IAk (yi ) , i = 1, 2, . . . , N

(1)

where Gi and Xi represent the genotype and covariates
of subject i, yi is the latent continuous variable, f is a
deterministic function reflecting the influence of G and X
on the latent variable, ei is the random noise, IAk (y) is the in-
dicator function of subset Ak and (r+1) is the total number of
categories of the observed outcome. Observed phenotype si is
determined based on which set (of sets {Ak, k = 0,1, . . . ,r})
the latent variable yi belongs to.

The most common simplified treatment of the SV process
is to introduce thresholds {c1, c2, . . . , cr} such that Ak =
[c k, c k+1). To make the representation concise, we assume
that c 0 = −∞, c r +1 = +∞. In this case, the SV model is
similar to the well-known threshold model. Furthermore, we
adopt linear formulation for function f and assume normal
distribution for the random noise. The model degenerates to
the following:⎧⎪⎨⎪⎩

yi = α0 + θ · Gi + γ T · Xi + e i ,

s i =
r∑

k=0
k · I(c k,c k+1) (y), i = 1, 2, ..., N

(2)

where ei is the random noise, which follows a normal dis-
tribution with a mean of 0 and a variance of σ 2. The null
hypothesis of H0: θ = 0 corresponds to no genetic effect of the

SNP on the phenotype. The parameter θ is to be identified
only based on observations (si, Xi, Gi), i = 1,2, . . . ,N to test
for the null hypothesis using the expectation-maximization
(EM) algorithm below.

In equation (2), if c1 = 0, then the SV model is the usual
ordered probit model. If the ei in equation (2) follows a logis-
tic distribution in equation (2), then the SV model becomes
ordered logistic regression (oLG) model (Greene & William,
2003). However, an important deviation from the usual or-
dered probit regression modeling is that here we take a novel
algorithm SVSI to estimate all the key underlying system pa-
rameters θ , γ , and c rather than the iteratively reweighted least
squares (IRWLS) algorithm which is usually used in the or-
dered probit regression. Thus, we call the proposed SV model
coupled with the new SVSI algorithm SV and call the usual
ordered probit model with IRWLS oPRB throughout the
paper to differentiate these two methods due to the better
performance of SV as described later. Without calculating the
complicated weighting matrix per iteration, the new algo-
rithm can achieve efficient results with decreased computing
time. Detailed discussions and results can be seen in the Re-
sults section.

Estimate of θ and Test Statistic

The system parameters in equation (1) can be estimated by
maximizing the likelihood function through the EM algo-
rithm. The estimation process is similar to that described in
Chen et al. (2012). Denote (θ, γ T, α0)T by an overall param-
eter �, (Gi , XT

i , 1)T by an overall input ϕi . The core iteration
process is as following:

�̂k+1 = �̂k −
(

N∑
i=1

ϕi · ϕT
i

)−1

⎡⎣ N∑
i=1

σ 2ϕi

⎛⎝ r∑
j=0

I{s i = j } · f (i, j +1)− f (i, j )

F (i, j +1)−F (i, j )

⎞⎠⎤⎦ ,

(3)

where f (i, j ) = f (cj − ϕT
i · �̂k) is the density function

and F (i, j ) = �(cj − ϕT
i · �̂k) is the cumulative distribution

function for a normal distribution with mean 0 and variance
σ 2 evaluated at cj − ϕT

i · �̂k . For more details of MLE, see
Section 1 in the Supplementary Information.

Suppose the iteration estimator converges to the MLE �̂,
the observed Fisher information matrix of �̂(denoted by I(�̂))
can be obtained according to the following formula (see Sec-
tion 1 in the Supplementary Information for details):
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I(�̂) = −E
[

∂2

∂�2
log L (�)

∣∣∣∣ �̂]

=
N∑

i=1

⎛⎝ r∑
j=0

[ f (i, j + 1) − f (i, j )]2

F (i, j + 1) − F (i, j )

⎞⎠ · ϕi · ϕT
i , (4)

where L(�) is the likelihood function given �. Testing for
no genetic effect of the SNP on the phenotype, that is, H0:
θ = 0 can be constructed for the SV method from the Wald
statistic

W = θ̂2

I(�̂)−1 [1, 1]
, (5)

where I(�̂)−1[1, 1], the element at the first row and the first
column of the inverse Fisher information matrix, represents
the estimated variance of θ̂ . Asymptotically, W is distributed
approximately as a central χ2 distribution with one degree of
freedom under the null hypothesis of no association.

Estimate of Threshold c

The estimation of parameters needs the knowledge of thresh-
old vector c = (c1, c2, . . . , cr). In some situations, the thresh-
olds are available. For example, in leukemia, minimal residual
disease (an assessment of decreasing leukemic burden in re-
sponse to therapy such as chemotherapy for cancer treatment)
can be categorized as negative (<0.01%), positive (�0.01%
but <1%), and high-positive (�1%) using two thresholds of
0.01% and 1% (Yang et al., 2009). In other cases, the latent
variable is unobserved and the thresholds are also unknown
to us. In the case of a binary phenotype, it is very easy to
estimate the threshold along with other parameters by deal-
ing with the threshold as a parameter (Kang et al., 2014).
But in the case of ordered categorical phenotypes, we have
to estimate them with some techniques. Fortunately, if we
presume model parameters as fixed values and the threshold
as variable, the Hessian matrix of likelihood function is posi-
tive definite, which means that the likelihood function has a
unique maximum point. Here we adopt a switching operation
for estimating parameters and thresholds. As for one iteration
step, we first estimate model parameters (θ, γ T, α0)T based on
equation (3), and then estimate the threshold c. Through ex-
tensive simulations, the gradient descent method shows good
performance with regard to computation time and is used to
estimate the threshold.

ĉ k+1
j = ĉ k

j + 1
N

[
N∑

i=1

I{s i = j−1} · f (i, j )

F (i, j ) − F (i, j − 1)

− I{s i = j } · f (i, j )

F (i, j + 1) − F (i, j )

]
, (6)

j = 1, 2, . . . ,r, where, f (i, j ) = f (ĉ k
j − ϕT

i · �̂k+1) and

F (i, j ) = �(ĉ k
j − ϕT

i · �̂k+1).
The detailed algorithm implementation of the SVSI

method is in Supplementary Information Section 2 and
the proposed new SV method has been implemented in
an R package, which is available for free download from
http://www.stjuderesearch.org/site/depts/biostats/software.
The simulations adopting the SV model and unbiased sam-
pling show that the estimation of parameters and thresholds
can converge close to the true value within 10 iterations and
complete the convergence process within 100 iterations (see
Table S1 and Fig. S1).

Simulations

Data Generation

We performed extensive simulation studies to evaluate
the performance of the proposed SV method against the
three competing alternatives including LG for the re-
grouped binary phenotype (recoding as 0 or greater than
0), oLG, and oPRB. We only considered an ordered phe-
notype with three categories (si = 0, 1, and 2) in our
simulations.

Genotype and covariates simulations
Given the MAF pA, the genotype frequencies p(G = g) were
calculated according to Hardy–Weinberg equilibrium (HWE)
law, i.e., p(G = 0) = (1 − pA)2, p(G = 1) = 2pA(1 − pA),
p(G = 2) = (pA)2. Two covariates were considered, x1

as a binary variable that is one with a probability of
0.5 and 0 otherwise; and x2 as a continuous variable
that follows a standard normal distribution. The genotypes
and two covariates for a population of 2,000,000 indi-
viduals were independently generated from their respective
distributions.

Phenotype simulations
The phenotype status was determined from the generated
genotype and covariates data according to two models below,
similar to those for the binary phenotype simulation method
by Kang et al. (2014) and Wu et al. (2011):

1. LG-based simulation method (LGsimu):

P (s i = 2|Gi , xi1, xi2)

= exp (α1 + θGi + 0.5xi1 + 0.5xi2)

1 + exp (α1 + θGi + 0.5xi1 + 0.5xi2)
;
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P(s i = 1|Gi , xi1, xi2)

= exp(α2 + θGi + 0.5xi1 + 0.5xi2)
1 + exp(α2 + θGi + 0.5xi1 + 0.5xi2)

− exp(α1 + θGi + 0.5xi1 + 0.5xi2)
1 + exp(α1 + θGi + 0.5xi1 + 0.5xi2)

.

P(s i = 0|Gi , xi1, xi2)

= 1 − exp(α2 + θGi + 0.5xi1 + 0.5xi2)
1 + exp(α2 + θGi + 0.5xi1 + 0.5xi2)

We controlled the proportions of individuals with the ordinal
disease outcome s = 2, 1, 0 by α1 and α2 and set it to1:3:6,
that is, 10% of individuals have s2, 30% of those have s1, and
60% of those have s0, in the case that all three regression
coefficients for SNP, xi1, and xi2 are 0.

1. SV-based simulation method (SVsimu): First a continuous
variable was generated from yi = θGi+ 0.5xi1+ 0.5xi2

+ ei, where ei follows a standard normal distribution.
Given thresholds (c1, c2), the individuals with a value of yi

higher than c2 have phenotype of 2 and ones with a value
of yi lower than c1 have phenotype of 0, the remaining
have phenotype of 1. We controlled the proportions of
individuals with the ordinal disease outcome s = 2, 1, 0
and set it to 1:3:6, that is, 10% of individuals have s2, 30%
of those have s1 and 60% of those have s0, in the case that
all three regression coefficients for SNP, xi1, and xi2 are 0.

Sampling of a cohort of N individuals
We selected a cohort of N individuals to conduct further asso-
ciation analysis based on the following two sampling strategies
to mimic two different designs for retrospective and prospec-
tive studies:

1. Randomly sample N/3 individuals per each category
(Same): we sampled a fixed sample size of N/3 individ-
uals from each category in the population of 2,000,000
individuals to mimic a retrospective design to maximize
the power of association testing. Note that this strategy
ensures that the sample size must be a multiple of three,
so that, for example, we may compare results obtained by
sampling 999 subjects with the same strategy to those ob-
tained by sampling 1000 subjects with the Rand strategy
described later.

2. Random sampling of N individuals (Rand): we randomly
chose N individuals from the population of 2,000,000
individuals simulated above to mimic a prospective
design.

Once the data were generated, for LG, we used the glm
function in R and fit the glm on the regrouped binary phe-
notype (new si = 0 if the original si = 0 or new si = 1 if the

original si = 1 or 2), genotype, and two covariates. For oLG
and oPRB, we used the polr function in MASS R package and
fit polr on the original three-categorical phenotype, genotype,
and two covariates. The Wald test statistic was then used for
inference in order for all three methods to be consistent with
the SV method.

Type I Error Rate Simulations

Eight values for MAFs of SNPs were considered: 0.0025,
0.0075, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5. The ordered
phenotype was determined from the generated genotype and
covariate data by using the two models mentioned above,
with θ = 0. To estimate the type I error rate of the SV
method, 10,000,000 replicated datasets were simulated for
each study, with a small sample size of 1000 (2500) and a large
sample size of 2000 (5000) for the Rand sampling method
for variants with MAF � 0.0075 (MAF = 0.0025) and the
corresponding numbers of 999 (2499) and 1998 (5001) for
the Same sampling method, respectively. We considered larger
significance levels α = 0.05 or 0.01 and stringent genome-
wide levels α = 10−5 or 10−6 under the null hypothesis of H0:
θ = 0.

Power Simulations

Three genetic disease models were considered: additive, dom-
inant, and recessive with their respective genotype coding G
(0, 1, 2), (0, 1, 1), and (0, 0, 1) when we simulated the phe-
notype. The ordered phenotype was determined from the
generated genotype and covariate data according to the sim-
ulation methods given above, with θ varying from 0.3 to
2 at an increment of 0.1. Datasets were generated 10,000
times for each configuration. The three methods used for
the type I error simulations were applied to each dataset, and
power was estimated as the proportions of p-values less than
α = 10−6.

To mimic a phase II clinical trial, a small sample size of
150 was also used for common variants with MAFs of 0.2
and 0.05 to estimate the power of SV at a significance level
of 1 × 10−4.

Results

Type I Error Rate

Table 1 shows the empirical type I error rates estimated
for all four methods. Regardless of significance levels, SV
correctly maintained type I error control at the given levels
for both common and rare variants. LG was conservative for
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Table 1 The ratio of the observed type I error rates of the set-valued (SV), logistic regression (LG and oLG), and the usual ordered Probit
(oPRB) methods over the given significance levels α using SVsimu data generation method and random sampling scheme.

0.05 0.01 1 × 10−5 1 × 10−6

n pA LG SV oLG oPRB LG SV oLG oPRB LG SV oLG oPRB LG SV oLG oPRB

150 0.05 0.8 1.02 0.96 1 0.37 0.9 0.77 0.86 0 0.4 57 1.3 0 0.26 560 11
150 0.2 0.98 1.06 1.02 1.04 0.84 1.1 0.98 1 0.07 1.10 0.4 0.7 0.1 1.1 0.2 0.48
2500 0.0025 0.66 0.9 0.88 0.9 0.2 0.69 0.79 0.69 0 0.16 190 0.16 0 0.07 1900 0.068
5000 0.0025 0.9 0.96 0.96 0.96 0.64 0.88 0.83 0.88 0 0.4 0.8 0.35 0 0.3 4.3 0.12
1000 0.0075 0.76 0.98 0.92 0.96 0.31 0.81 0.73 0.8 0 0.26 55 0.22 0 0.1 550 0.19
2000 0.0075 0.9 1 0.98 1 0.70 0.95 0.88 0.94 0.01 0.42 0.4 0.4 0 0.3 0.5 0.34
1000 0.01 0.84 0.98 0.94 0.98 0.50 0.89 0.79 0.88 0 0.34 4.50 0.29 0 0.2 43 0.18
2000 0.01 0.92 1 0.98 1 0.77 0.96 0.92 0.95 0.04 0.58 0.54 0.57 0 0.4 0.5 0.44
1000 0.05 0.98 1 1 1 0.92 1 0.99 0.99 0.39 0.86 0.71 0.81 0.2 0.8 0.6 0.74
2000 0.05 1 1 1.02 1 0.97 1 1 1 0.69 0.94 0.86 0.92 0.5 0.8 0.8 0.8
1000 0.2 1 1 1.02 1 0.97 1 1 1 0.77 1 0.93 0.96 0.7 0.9 0.7 0.78
2000 0.2 1 1 1.02 1 0.99 1 1 1 0.85 1.10 1 1.1 0.7 1 0.9 0.98

n is the number of individuals sampled from the population; pA is minor allele frequency of SNP; LG stands for logistic regression model
on the regrouped binary outcome (recoding as 0 or greater than 0); SV stands for the set-valued method; oLG stands for ordered logistic
regression method; oPRB stands for the usual ordered probit model with the traditional IRWLS algorithm. Values in bold means inflated
type I error rates.

stringent genome-wide levels if SNPs were rare because of
large variance of parameter estimate (Table 2; Kang et al.,
2014). oLG and oPRB correctly controlled type I error rate
at larger significance levels but did not control type I error
rate at stringent genome-wide levels for rare variants when
sample size was small because of instability of oLG and oPRB
when there are some empty or small cells. As oPRB cannot
control type I error rate at α = 10−6 for rare SNP with MAF
0.0075 and the power of SV is almost identical to that of
oPRB in most cases, the power of oPRB was omitted and
was not included in the later section.

Power of the SV Method

Figures 1 and 2 show the power of the three methods as a
function of effect size (θ ) for an additive disease model. As
expected, the power of SV and oLG increased with the in-
crease in effect size regardless of distributions of noise, the
genetic disease model and sampling methods. The power of
three methods was generally higher for the Same sampling
method than that for the Rand sampling method for the
same parameter setup. This suggests that for a retrospective
design, sampling all individuals with a more extreme pheno-
type is preferred for assessing genetic effect. In some settings,
both SV and oLG based on ranked sets performed better than
LG based on the regrouped sets. The power difference be-
tween them could be more than 50% at a significance level
of 10−6 depending on the scale of the sample size. As ex-
pected, for a SNP with MAF of 0.05, given a sample size of

1000 with Rand and 999 with Same, the power of LG for
the regrouped binary outcome first increased to 100%, then
decreased with increase in effect size (Fig. 2A and 2B). The
drop in power of the LG method for the very large effect
size given a small fixed sample size and an SNP with small
MAF is due to the high probability of absence of individuals
with phenotype 0 and carrying minor alleles (see population
3 × 3 tables in Supplementary matrix 1 for θ = 1 and 2,
respectively), which leads to a very large estimated standard
error of θ̂ by LG. For example, given N = 999, for θ = 1,
0 of 1000 simulated datasets had absence of individuals with
phenotype 0 and carrying minor alleles so that the mean and
the standard deviation of θ̂ were 2.024 and 0.258, which led

to a standardized effect size of θ̂

s d (θ̂ )
= 7.84. However, for

θ = 2, 58 of 1000 simulated datasets had absence of individ-
uals with phenotype 0 and carrying minor alleles so that the
mean and the standard deviation of θ̂ were 4.50 and 3.288,

which led to a standardized effect size of θ̂

s d (θ̂ )
= 1.37, which

is much smaller than that for θ = 1. Below we will focus
on the power comparison between SV and oLG. The power
gain for the new SV method was noticeable in detecting rare
variants especially when the individuals were sampled using
the Same sampling method from the population generated
using SVsimu (Figs 1–3).

For a common SNP with an MAF of 0.2 or 0.05, the
power of SV appeared to be similar to or higher than that of
oLG, depending on the scale of sample size, regardless of the
genetic disease models, sampling methods, and distributions

Annals of Human Genetics (2015) 79,294–309 299C© 2015 John Wiley & Sons Ltd/University College London



W. Bi et al.

T
ab

le
2

T
he

m
ea

n
of

θ̂
,m

ea
n

of
es

tim
at

ed
st

an
da

rd
er

ro
r

of
θ̂
,a

nd
st

an
da

rd
de

vi
at

io
n

of
θ̂

ac
ro

ss
sim

ul
at

io
n

re
pe

tit
io

ns
fo

r
th

e
se

t-
va

lu
ed

(S
V

)
an

d
lo

gi
st

ic
re

gr
es

sio
n

(L
G

an
d

oL
G

)
m

et
ho

ds
ba

se
d

on
10

00
sim

ul
at

io
ns

∗ .

LG
oL

G
SV

θ
SM

D
M

θ̂
ŝe
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ŝe
(θ̂

)

θ̂

sd
(θ̂

)

R
an

d,
p A

=
0.

00
75

0
LG

sim
u

H
0

0.
02

0.
39

1
0.

40
9

0.
05

1
0.

04
9

0.
00

5
0.

36
7

0.
38

7
0.

01
3

0.
01

2
0.

00
17

0.
21

9
0.

23
1

0.
00

8
0.

00
7

0.
5

LG
sim

u
A

D
D

0.
53

5
0.

39
8

0.
40

2
1.

34
4

1.
32

9
0.

51
4

0.
35

3
0.

35
4

1.
45

6
1.

45
2

0.
30

39
0.

21
2

0.
21

3
1.

43
1.

42
6

2
LG

sim
u

A
D

D
2.

22
9

2.
71

1
1.

33
6

0.
82

2
1.

66
9

2.
00

9
0.

36
6

0.
37

4
5.

49
5.

37
4

1.
19

42
0.

21
8

0.
22

2
5.

47
8

5.
37

3
0

SV
sim

u
H

0
-0

.0
2

0.
40

9
0.

40
8

-0
.0

5
-0

.0
5

-0
.0

26
0.

37
2

0.
38

6
-0

.0
7

-0
.0

7
-0

.0
16

0.
22

1
0.

22
9

-0
.0

73
-0

.0
71

0.
5

SV
sim

u
A

D
D

0.
84

0.
44

0.
47

1.
91

1.
78

9
0.

80
7

0.
36

1
0.

37
7

2.
23

6
2.

13
9

0.
48

34
0.

21
7

0.
22

6
2.

23
1

2.
13

9
2

SV
sim

u
A

D
D

6.
95

3
83

.6
1

5.
78

5
0.

08
3

1.
20

2
3.

44
2

0.
71

1
0.

64
8

4.
84

1
5.

31
2.

03
33

0.
28

4
0.

30
3

7.
15

6.
70

9
R

an
d,

p A
=

0.
2

0
LG

sim
u

H
0

-0
.0

03
0.

08
2

0.
08

2
-0

.0
4

-0
.0

4
-0

.0
04

0.
07

8
0.

07
8

-0
.0

6
-0

.0
6

-0
.0

03
0.

04
7

0.
04

7
-0

.0
64

-0
.0

64
0.

5
LG

sim
u

A
D

D
0.

50
2

0.
08

5
0.

08
7

5.
94

1
5.

79
8

0.
5

0.
07

6
0.

07
7

6.
56

6
6.

47
7

0.
29

76
0.

04
5

0.
04

6
6.

55
5

6.
47

5
2

LG
sim

u
A

D
D

2.
00

3
0.

12
4

0.
12

8
16

.2
15

.6
6

1.
99

5
0.

09
3

0.
09

3
21

.4
3

21
.3

5
1.

17
9

0.
05

1
0.

05
3

23
.3

22
.1

3
0

SV
sim

u
H

0
1E

-0
3

0.
08

6
0.

08
6

0.
01

1
0.

01
1

1E
-0

6
0.

07
9

0.
07

8
1E

-4
1E

-4
-2

E
-4

0.
04

7
0.

04
6

-0
.0

04
-0

.0
04

0.
5

SV
sim

u
A

D
D

0.
83

3
0.

09
5

0.
09

5
8.

78
1

8.
77

9
0.

83
7

0.
07

9
0.

08
10

.5
7

10
.5

2
0.

50
12

0.
04

7
0.

04
7

10
.7

6
10

.5
7

2
SV

sim
u

A
D

D
3.

58
1

0.
22

1
0.

21
4

16
.1

9
16

.7
3

3.
41

8
0.

13
2

0.
12

9
25

.8
4

26
.5

9
2.

00
31

0.
06

8
0.

07
2

29
.5

8
27

.9
7

Sa
m

e,
p A

=
0.

00
75

0
LG

sim
u

H
0

0.
05

0.
42

0.
43

3
0.

12
0.

11
6

0.
01

7
0.

34
8

0.
35

5
0.

05
0.

04
9

0.
01

03
0.

21
1

0.
21

6
0.

04
9

0.
04

8
0.

5
LG

sim
u

A
D

D
0.

63
2

0.
71

7
0.

63
1

0.
88

2
1.

00
2

0.
50

6
0.

32
9

0.
33

2
1.

53
8

1.
52

3
0.

30
91

0.
2

0.
20

2
1.

54
3

1.
53

2
2

LG
sim

u
A

D
D

3.
04

2
17

.6
2

3.
06

2
0.

17
3

0.
99

3
1.

93
9

0.
33

8
0.

33
3

5.
74

5.
81

6
1.

17
4

0.
19

5
0.

19
3

6.
03

5
6.

09
1

0
SV

sim
u

H
0

0.
00

4
0.

44
2

0.
46

0.
00

9
0.

00
8

-0
.0

02
0.

36
2

0.
36

9
-5

E
-3

-4
E

-3
-8

E
-4

0.
21

7
0.

22
1

-0
.0

04
-0

.0
04

0.
5

SV
sim

u
A

D
D

0.
94

6
1.

11
6

0.
80

6
0.

84
8

1.
17

4
0.

81
9

0.
34

5
0.

35
3

2.
37

1
2.

31
7

0.
49

36
0.

20
6

0.
21

2.
39

2
2.

34
8

2
SV

sim
u

A
D

D
8.

88
1

14
0.

8
6.

37
5

0.
06

3
1.

39
3

3.
36

8
0.

49
3

0.
86

6.
83

6
3.

91
7

1.
96

05
0.

26
3

0.
29

7.
45

4
6.

75
9

Sa
m

e,
p A

=
0.

2
0

LG
sim

u
H

0
-0

.0
03

0.
08

7
0.

08
9

-0
.0

4
-0

.0
4

-0
.0

05
0.

07
4

0.
07

4
-0

.0
7

-0
.0

7
-0

.0
03

0.
04

5
0.

04
5

-0
.0

71
-0

.0
71

0.
5

LG
sim

u
A

D
D

0.
54

8
0.

09
1

0.
08

9
6.

01
1

6.
16

9
0.

5
0.

07
3

0.
07

2
6.

85
3

6.
92

0.
30

35
0.

04
4

0.
04

4
6.

89
5

6.
96

3
2

LG
sim

u
A

D
D

2.
04

2
0.

13
1

0.
12

8
15

.6
5

15
.9

3
1.

97
9

0.
09

2
0.

09
2

21
.4

6
21

.5
6

1.
16

99
0.

05
0.

05
2

23
.3

7
22

.3
9

0
SV

sim
u

H
0

-0
.0

02
0.

09
2

0.
09

3
-0

.0
3

-0
.0

3
-1

E
-0

3
0.

07
6

0.
07

7
-0

.0
1

-0
.0

1
-6

E
-0

4
0.

04
6

0.
04

6
-0

.0
14

-0
.0

14
0.

5
SV

sim
u

A
D

D
0.

87
1

0.
10

1
0.

09
8

8.
61

5
8.

86
6

0.
83

3
0.

07
8

0.
07

5
10

.6
8

11
.0

4
0.

49
99

0.
04

6
0.

04
5

10
.9

1
11

.2
2

SV
sim

u
A

D
D

3.
33

7
0.

22
0.

20
5

15
.1

4
16

.3
1

3.
27

3
0.

12
7

0.
11

9
25

.7
3

27
.4

1.
91

47
0.

06
4

0.
06

6
29

.7
28

.9
3

∗ n
=

20
00

an
d

19
98

fo
r
R

an
d

an
d

S
am

e
sa

m
pl

in
g

sc
he

m
a.

θ̂
:

T
he

m
ea

n
of

θ̂
fo

r
10

00
re

pl
ic

at
es

;
ŝe
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Figure 1 Power of SV method for the additive model using LGsimu simulation method. Panels A and B
show sample sizes of N = 1000 (999) and 2500 (2499) for common and rare variants, respectively. Panels
C and D show sample sizes of N = 2000 (1998) and 5000 (5001) for common and rare variants,
respectively. The solid, dotted, and dash lines correspond to the SV, LG, and oLG methods, respectively.
The numbers of 1–4 correspond to the tested SNPs with MAFs of 0.2, 0.05, 0.0075, and 0.0025,
respectively. The significance level of the test was 1 × 10−6.

of noise (Figs 1, 2, and 4). Surprisingly, with a small sample
size of N = 150, for an SNP with an MAF of 0.2 and θ = 0.7,
the power difference between SV and oLG was 8% (Fig. 4B
and 4D). But for an SNP with an MAF of 0.05 and θ = 1.5,
the power difference between SV and oLG was 15% (Fig. 4B
and 4D).

For a rare SNP with an MAF of 0.0075 or 0.0025, if
the noise follows a logistic distribution, with the Rand
sampling method, the power of oLG was almost identical
to or slightly higher than that of SV, regardless of genetic
disease models (Fig. 1A–C). However, interestingly, with
the Same sampling method, the power of SV was slightly or
much higher than that of oLG, regardless of genetic disease
models (Fig. 1B–D). For example, for an SNP with MAF
of 0.0075, θ = 2 (equivalent to OR = eθ = 7.4), and N
= 999, the power difference was 12% between oLG and SV
(Fig. 1B). Similarly, for an SNP with MAF of 0.0025, θ =
1.8 (equivalent to OR = eθ = 6), and N = 5001, the power

difference was 10% between oLG and SV (Fig. 1D). If the
noise follows a normal distribution, regardless of sampling
methods, the power of SV was generally higher than that of
oLG (Fig. 2). The power difference between oLG and SV
became larger at larger effect size and smaller sample sizes.
For example, for an SNP with MAF of 0.0075, θ = 2, and N
= 999, the power difference was 24% between oLG and SV
(Fig. 2A). Similarly, for an SNP with MAF of 0.0025, θ = 2,
and N = 1000, the power difference was 17% between oLG
and SV (Fig. 3B). These results indicate that for rare genetic
variant association studies, we strongly recommend that SV
be employed instead of LG and oLG if the phenotype was
defined from a continuous normal distribution.

Figure 3 displays the power of the SV and oLG methods
as a function of sample size for the additive disease model. As
expected, the power of these two methods increased with an
increase in sample size. For a common SNP with an MAF of
0.2 or 0.05 and an effect size of 0.4 or 0.8, respectively, the
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Figure 2 Power of SV method for the additive model using SVsimu simulation method.
Panels A and B show sample sizes of N = 1000 (999) and 2500 (2499) for common and rare
variants, respectively. Panels C and D show sample sizes of N = 2000 (1998) and 5000 (5001)
for common and rare variants, respectively. The solid, dotted and dash lines correspond to the
SV, LG and oLG methods, respectively. The numbers of 1–4 correspond to the tested SNPs
with MAFs of 0.2, 0.05, 0.0075, and 0.0025, respectively. The significance level of the test was
1×10−6.

power of SV was almost identical to that of oLG, regardless
of the distributions of noise, sample size, disease models, and
sampling methods (Fig. 3). For a rare SNP with an MAF of
0.0075 or 0.0025, and an effect size of 2 or 2.4, if the noise
follows a logistic distribution and a Rand sampling method
is used, the power of SV appeared to be similar to that of
oLG, regardless of the disease models (Fig. 3A) but the power
of SV was much larger than that of oLG when the Same
sampling method was used (Fig. 3B). The power difference
became larger with moderate sample sizes. If the noise follows
a normal distribution, regardless of sampling method, the
power of SV was much greater than that of oLG but this
depended on the sample size (Fig. 3C–D).

Variance of the Genetic Association Parameter
Estimate

Table 2 and Table 2S gives the mean of θ̂ , the mean of the
estimated standard errors of θ̂ , and the standard deviations
of θ̂ across simulation repetitions for the LG, SV, and oLG

methods based on 1000 simulation repetitions. Data were
generated using the same parameter setup as given in Table 1
and Figures 1–4.

The mean of estimated standard error of θ̂ appeared to be
close to its standard deviation for the SV method in all simula-
tion setups but not for LG, oLG, and oPRB (Table 2 and Table
S2). Interestingly, when an SNP is rare (pA = 0.0075) and the
association parameter is large (θ = 2), the means of the esti-
mated standard errors of θ̂ for the oLG and LG method were
much larger than their standard deviations, especially when
the sample size was small, which leads to their significant
power loss compared with RV and oPRB. This is not surpris-
ing since in this setting, there is a high probability of absence
of individuals with phenotype 0 and carrying minor alleles,
which leads to a very large estimated standard error of θ̂ .

We also calculated the ratio of the mean of θ̂ over the
mean of the estimated standard error of θ̂ , that is, θ̂

ŝ e (θ̂ )
, and

the ratio of the mean of θ̂ to the standard deviation of θ̂ , that

is, θ̂

s d (θ̂ )
, which were used to mimic the standardized effect
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Figure 3 Power of SV method as a function of sample size. The left and right panels show LGsimu and
SVsimu, respectively. The x-axis is the sample size divided by 100. The solid and dash lines correspond to
the SV and oLG methods, respectively. The numbers of 1–4 correspond to the tested SNPs with MAFs
of 0.2, 0.05, 0.0075, and 0.0025 respectively. The significance level of the test was 1×10−6. θ values were
0.4, 0.8, 2, and 2.4 for SNPs with MAFs of 0.2, 0.05, 0.0075, and 0.0025, respectively.

sizes to make the estimates a comparable scale, and this was
used to compare different models (Table 2 and Table S2).
Under the null hypothesis, no matter what the phenotype
simulation model, sampling method, MAF, and sample size,
both standardized effect sizes with SV were very close and
both were close to 0, which showed that SV could control
type I error rate but oLG could not. Under some extreme

situations such as small sample size and rare SNP, θ̂

ŝ e (θ̂ )
was

higher than θ̂

s d (θ̂ )
for oLG but both would be close to 0 as

the sample size increased. Under the alternative hypothesis,

in most cases SV had the “standardized effect sizes” similar
to oLG and both were much larger than LG which further
demonstrates that SV had power similar to that of oLG and
both had larger power than LG in most cases. Under some
extreme situations, such as a rare SNP, small sample size or
large effect size, SV had higher “standardized effect sizes”
than oLG, which clearly demonstrated the power gain of
SV compared with LG and oLG for these settings. All these
simulation results obviously demonstrate that SV can provide
a more efficient, more robust and much less variable θ̂ than
can oLG. In particular, it dominates other methods under
situations with small sample sizes and rare variants.
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We also recorded the computing time for each of the four
methods above as implemented in R and Matlab for the sim-
ulated data. In Matlab, SV was typically about twice as fast as
oPRB and oLG but was similar to LG. In R, SV, oPRB, and
oLG had similar run times, with SV tending to be slightly
slower than oLG but all were slower than LG (Supplementary
Information Section 3 and Table S3). These are consistent
with the results reported by Bi and Zhao (2014).

Application to the top 25 SNPs of MRD in
ALL

ALL is the most common type of cancer in children and
the cure rate is more than 80%, but there exists considerable
interindividual variability in therapy response (Yang et al.,
2009). Genetic variants of SNPs in the interleukin 15 (IL15)
gene and other SNPs associated with risk of MRD at the

end of induction therapy have been reported recently (Yang
et al., 2009). We analyzed the top 25 SNPs identified by
the Spearman rank correlation test in childhood ALL in two
independent populations: 318 patients in St Jude Total Ther-
apy protocols XIIIB and XV (Pui et al., 2004, 2009), and 169
patients in Children’s Oncology Group (COG) trial P9906
(Borowitz et al., 2003). For St Jude patients, MRD status
was categorized as negative (<0.01%), positive (�0.01% but
<1%), and high-positive (�1%). For COG patients, MRD
status was similarly categorized as: negative (�0.01%), positive
(>0.01%, but �1%), and high-positive (>1%).

Table 3 shows association results for the top 25 SNPs in
both individual cohorts and the combined cohort of St Jude
and COG. At a significance level of 0.05/25 = 0.002, in
the combined cohorts, 24 SNPs were found to be statistically
significant by LG, oLG, and oPRB but 23 of them were
detected by SV; for the St. Jude cohorts, LG, oLG, oPRB, and
SV found 10, 9, 9, and 8 SNPs to be statistically significant,

304 Annals of Human Genetics (2015) 79,294–309 C© 2015 John Wiley & Sons Ltd/University College London



SVSI for Genetic Association Studies

T
ab

le
3

p-
va

lu
es

of
as

so
ci

at
io

n
te

st
s

be
tw

ee
n

SN
Ps

an
d

m
in

im
al

re
sid

ua
ld

ise
as

e
in

St
.J

ud
e

an
d

C
O

G
co

ho
rt

s.

SJ
C

O
G

C
om

bi
ne

d

SN
P

LG
oL

G
oP

R
B

SV
LG

oL
G

oP
R

B
SV

LG
oL

G
oP

R
B

SV

SN
P_

A
-1

70
91

14
0.

00
86

0.
00

59
0.

00
55

0.
00

6
0.

00
24

0.
00

17
1

0.
00

28
6

0.
00

3
6.

67
×1

0−6
1.

27
×1

0−6
2.

27
×1

0−6
2.

85
×1

0−6

SN
P_

A
-1

79
35

91
0.

00
15

0.
00

05
0.

00
1

0.
00

12
0.

01
81

0.
01

41
1

0.
01

67
5

0.
01

7
5.

15
×1

0−6
1.

03
×1

0−6
2.

55
×1

0−6
2.

64
×1

0−6

SN
P_

A
-1

79
43

25
0.

00
06

0.
00

06
0.

00
1

0.
00

11
0.

00
03

0.
00

01
7

0.
00

03
1

3×
10

−4
5.

74
×1

0−8
1.

43
×1

0−8
4.

44
×1

0−8
4.

31
×1

0−8

SN
P_

A
-1

80
79

59
0.

01
19

0.
01

31
0.

01
86

0.
02

95
0.

00
1

0.
00

12
8

0.
00

21
1

0.
00

2
4.

96
×1

0−6
3.

64
×1

0−6
8.

79
×1

0−6
1.

29
×1

0−5

SN
P_

A
-1

89
23

41
0.

00
45

0.
00

62
0.

01
57

0.
01

8
0.

00
02

9.
45

×1
0−5

8.
59

×1
0−5

1×
10

−4
3.

38
×1

0−7
7.

17
×1

0−8
1.

92
×1

0−7
3.

96
×1

0−7

SN
P_

A
-1

91
80

14
0.

00
22

0.
00

39
0.

01
07

0.
01

13
0.

00
81

0.
00

80
8

0.
00

86
0.

01
1

4.
70

×1
0−5

8.
23

×1
0−5

0.
00

02
3

0.
00

02
8

SN
P_

A
-1

95
81

36
0.

00
17

0.
00

23
0.

00
51

0.
00

53
0.

01
24

0.
00

99
3

0.
00

84
9

0.
00

9
2.

18
×1

0−5
2.

35
×1

0−5
3.

36
×1

0−5
3.

55
×1

0−5

SN
P_

A
-1

98
03

57
0.

01
04

0.
01

59
0.

04
14

0.
04

57
0.

00
73

0.
00

73
4

0.
00

99
5

0.
01

8
7.

26
×1

0−5
0.

00
02

5
0.

00
12

3
0.

00
18

1
SN

P_
A

-1
98

82
56

0.
00

03
0.

00
03

0.
00

08
0.

00
09

0.
02

74
0.

01
29

7
0.

01
55

2
0.

01
7

3.
47

×1
0−5

1.
96

×1
0−5

6.
82

×1
0−5

8.
78

×1
0−5

SN
P_

A
-2

04
44

45
0.

01
04

0.
00

51
0.

00
17

0.
00

19
0.

00
78

0.
00

22
6

0.
00

21
5

0.
00

19
5

0.
00

01
3

1.
73

×1
0−5

6.
74

×1
0−6

6.
47

×1
0−6

SN
P_

A
-2

06
29

45
0.

00
06

0.
00

07
0.

00
17

0.
00

18
0.

00
1

0.
00

21
6

0.
00

27
7

0.
00

3
4.

12
×1

0−7
8.

67
×1

0−7
2.

46
×1

0−6
3.

02
×1

0−6

SN
P_

A
-2

10
54

58
0.

00
15

0.
00

05
0.

00
1

0.
31

38
0.

02
74

0.
01

29
7

0.
01

55
2

0.
17

1
7.

74
×1

0−5
9.

51
×1

0−6
2.

88
×1

0−5
0.

08
43

1
SN

P_
A

-2
13

98
51

0.
00

5
0.

00
72

0.
01

54
0.

01
76

0.
00

31
0.

00
34

8
0.

00
56

2
0.

00
7

1.
26

×1
0−5

1.
39

×1
0−5

4.
85

×1
0−5

7.
62

×1
0−5

SN
P_

A
-2

17
20

39
0.

00
27

0.
00

23
0.

00
29

0.
00

3
0.

03
35

0.
00

42
4

0.
00

18
6

0.
00

16
0.

00
05

9
0.

00
02

0.
00

01
9.

40
×1

0−5

SN
P_

A
-2

17
45

56
0.

00
05

0.
00

07
0.

00
2

0.
00

22
0.

00
45

0.
00

55
9

0.
00

84
4

0.
00

9
2.

37
×1

0−6
3.

93
×1

0−6
1.

47
×1

0−5
1.

96
×1

0−5

SN
P_

A
-2

18
41

77
0.

00
33

0.
00

3
0.

00
29

0.
00

25
0.

00
56

0.
00

56
5

0.
00

56
4

0.
00

6
2.

85
×1

0−5
2.

28
×1

0−5
2.

29
×1

0−5
1.

99
×1

0−5

SN
P_

A
-2

20
77

18
0.

00
77

0.
00

36
0.

00
12

0.
00

14
0.

00
93

0.
00

25
6

0.
00

23
9

0.
00

2
0.

00
01

1
1.

32
×1

0−5
5.

23
×1

0−6
5.

18
×1

0−6

SN
P_

A
-2

26
11

53
0.

00
55

0.
00

49
0.

00
64

0.
03

6
0.

98
85

0.
00

48
2

0.
00

31
9

0.
27

8
0.

00
31

9
0.

00
24

4
0.

00
30

7
0.

04
40

1
SN

P_
A

-2
26

49
53

0.
00

08
0.

00
08

0.
00

13
0.

00
26

0.
00

01
8.

8×
10

−5
0.

00
01

6
1×

10
−4

2.
77

×1
0−8

7.
47

×1
0−9

2.
24

×1
0−7

3.
27

×1
0−8

SN
P_

A
-4

23
38

26
0.

00
18

0.
00

19
0.

00
31

0.
00

32
0.

00
02

0.
00

03
2

0.
00

05
5

8×
10

−4
1.

26
×1

0−7
6.

62
×1

0−8
3.

30
×1

0−7
4.

47
×1

0−7

SN
P_

A
-4

23
42

52
0.

01
6

0.
02

07
0.

03
62

0.
04

03
0.

98
43

0.
01

17
7

0.
00

57
0.

01
5

0.
00

07
9

0.
00

04
7

0.
00

06
9

0.
00

11
6

SN
P_

A
-4

23
62

70
0.

00
13

0.
00

1
0.

00
07

0.
00

08
0.

00
22

0.
00

34
8

0.
00

49
0.

00
5

1.
09

×1
0−5

1.
15

×1
0−5

1.
45

×1
0−5

1.
89

×1
0−5

SN
P_

A
-4

24
47

50
0.

00
51

0.
00

35
0.

00
32

0.
00

31
0.

01
34

0.
00

51
8

0.
00

55
0.

00
6

0.
00

05
6

0.
00

03
0.

00
03

1
0.

00
03

2
SN

P_
A

-4
24

97
89

0.
03

33
0.

03
35

0.
04

16
0.

04
15

0.
00

11
0.

00
07

0.
00

05
4

9×
10

−4
1.

83
×1

0−5
6.

87
×1

0−6
6.

51
×1

0−6
8.

98
×1

0−6

SN
P_

A
-4

27
29

73
0.

00
29

0.
00

24
0.

00
2

0.
00

19
0.

00
11

0.
00

04
1

0.
00

03
6

3×
10

−4
2.

07
×1

0−5
1.

05
×1

0−5
3

7.
43

×1
0−6

6.
72

×1
0−6

L
G

st
an

ds
fo

r
lo

gi
st

ic
re

gr
es

sio
n

m
od

el
on

th
e

re
gr

ou
pe

d
bi

na
ry

ou
tc

om
e

(r
ec

od
in

g
as

0
or

gr
ea

te
r

th
an

0)
;S

V
st

an
ds

fo
r

th
e

se
t-

va
lu

ed
m

et
ho

d;
o
L
G

st
an

ds
fo

r
or

de
re

d
lo

gi
st

ic
re

gr
es

sio
n

m
et

ho
d;

o
P
R

B
is

th
e

us
ua

lp
ro

bi
t

m
od

el
w

ith
IR

W
LS

es
tim

at
io

n
al

go
ri

th
m

.T
he

p-
va

lu
es

in
bo

ld
sh

ow
ed

st
at

ist
ic

al
ly

sig
ni

fic
an

t
at

a
sig

ni
fic

an
ce

le
ve

lo
f0

.0
02

.

Annals of Human Genetics (2015) 79,294–309 305C© 2015 John Wiley & Sons Ltd/University College London



W. Bi et al.

respectively, whereas five were detected by all four methods;
for the COG cohorts, LG, oLG, oPRB, and SV found 8,
8, 7, and 8 SNPs to be statistically significant, respectively,
whereas six were detected by all four methods. Only one
SNP (SNP_A-17,94,325) was detected by all our methods in
both the SJ and COG cohorts. Overall, the p-values for all
four methods were comparable. Based on these results it seems
that all four methods perform similarly. However, we know
that the distribution of the continuous MRD measure at the
end of induction therapy was right-skewed and definitely not
following a normal distribution especially for ALL (Moppett
et al., 2003). More importantly, we do not know what are the
true SNPs associated with MRD in ALL.

Application to the Mini-Exome Data
of Genetic Analysis Workshop 17

To further evaluate the performance of the proposed SV
method, we analyzed data from the Genetic Analysis Work-
shop 17 (GAW17), which contained “mini-exome” sequence
genotype data of 24,487 SNPs in 3205 genomic regions of 697
unrelated individuals provided by the 1000 Genome Project
(1000 Genomes Project Consortium, 2010). Three quanti-
tative phenotypes (Q1, Q2, and Q4) were simulated from
the normal distribution. Q1 was influenced not only by ge-
netic variant, but also by environmental variables, and gene-
environment interactions. Q2 was only influenced by genetic
variants and not by environmental variables. Q4 was influ-
enced only by the environments and not by genetic variants.
Here we only analyzed Q2 as there were no environments and
gene–environment interactions associated with Q2. Q2 was
influenced by 72 SNPs in 13 genes. Furthermore, 200 repli-
cate datasets were generated for each phenotype, using one
fixed genotype data. To apply our methods to the GAW17
data, we classified Q2 to the ordered categorical phenotype
using �−1(0.9) and �−1(0.6) as two thresholds and then ana-
lyzed them by mimicking we do not know Q2, which is the
same as our SV model. First, quality control analysis was per-
formed on the SNPs and SNPs with MAFs less than 0.0086
or HWE test p-values less than 0.00001 were excluded. There
were 8387 SNPs remaining in the association analysis of Q2.
The reclassified ordered categorical phenotype for the 1st,
10th, 100th, and 200th replicate data were used as our out-
comes (see Table S3 for frequency table and Fig. S2 for the
histograms) and included age, gender, and smoking status as
covariates in all four methods above.

Table 4 shows the association analyses results for Q2. At a
significance level of 0.00001, for the 1st replicate data, there
were no SNP found to be statistically significant by using SV
and LG but there were 112 noncausal SNPs found statistically
significant by using oLG and oPRB, which was similar to T
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the 10th replicate data. For the 200th replicate data, at a level
of 0.00001, no SNP was found to be statistically significant
by any of the four methods. For the 100th replicate data,
SV and LG only found one true causal SNP but did not
detect noncausal SNPs. oLG and oPRB also found the same
true causal SNP but simultaneously found 99 noncausal SNPs
whose p-values were 0. At a significance level of 0.0005, SV
found more true causal SNPs than, and similar noncausal
SNPs to LG. SV found similar true causal SNPs to, but much
fewer non-causal SNPs than oPRB and oLG. GAW17 data
analyses showed that SV had similar or higher power than oLG
and oPRB but the latter cannot maintain the type I error rate.
These results were consistent with and further supported our
extensive simulation results above.

Discussion

With the availability of data from whole-genome sequencing
and whole-exome sequencing studies in which small or mod-
erate sample sizes are used due to the high cost of sequencing
technology (Lanktree et al., 2010; Emond et al., 2012) and/or
the rare diseases in cancer pharmacogenomics studies such as
those involving pediatric cancers of retinoblastoma and Ew-
ing’s sarcoma (Gurney et al., 1995; Wheeler et al., 2013), there
is an increasing demand for the development of powerful and
robust association testing procedures for identifying genetic
variations associated with an ordered multiple responses phe-
notype of interest. In this study, we propose a new SV system
that models the relationship between an ordered phenotype
and genetic variants and we introduce an SVSI approach to
testing the genotype-ordered categorical phenotype associa-
tion. In more detail, the simplified SV model assumes system
noise following a normal distribution. The normal distri-
bution assumption is considered reasonable because it is in
accordance with the classical central limit theory. After a sim-
ple transformation, we find the logistic approach is also a
specified form of the SV model, and the diversity is that the
system noise is slightly different from the normal distribu-
tion. The diversity is so subtle that the corresponding results
show only a tiny difference under asymptotic situations, that
is common MAF and/or large sample size. Under nonasymp-
totic situations, that is low MAF and/or small sample size, it
is inevitable for every statistical method to suffer power loss.
The degree of power loss depends largely on the underlying
assumptions. Through simulations, we found that both the
LG and oLG methods suffered obvious power loss because
of high variance of estimated parameter and that oPRB and
oLG could not control type I error at a stringent signifi-
cance level. The SV method sustained a better performance
in these situations due to the normal distribution of the noise

term compared to the logistic distribution with heavier tails,
as well as due to the updated computationally efficient and
robust EM algorithm.

The statistical methods based on model are the most effec-
tive when the model is in accordance with actual data. Invalid
model assumption will bias the results in either direction.
Hence, we think it is very important to compare two meth-
ods under their own model assumptions. Simulations and real
data applications show that the proposed SV method has a
robust performance for testing association between ordered
phenotypes and genetic variations regardless of the logistic or
normal distributions of noise and genetic disease models, and
that generally outperforms the commonly used LG model,
and the oLG model, especially when the SNP is rare and
when the sample size is limited. Thus, we recommend the
use of the SV approach instead of the LG or oLG model,
to identify genetic variants in genetic association studies for
ordered phenotypes. Although not reported here, simulation
studies showed similar results for the dominant and recessive
disease models and for a common SNP with MAFs such as
0.1, 0.3, 0.4, or 0.5.

When we estimate the parameters using the system
identification method, we suppose that the variance of
noise is known as one because we are interested in testing
genotype–phenotype associations and not in estimating the
effect size of the association. In real data analysis, the true
variance of noise is usually unknown and also may not be
equal to one, which will definitely affect the power of the
LG, oLG, and SV. In a simulation scenario, not surprisingly,
as the true variance is bigger (smaller) than one, the power
of all three methods will decrease (increase). However, as
expected, the power of the SV method is still identical
to or higher than that of oLG and both are much higher
than that of LG (data not shown). If the distribution of
underlying noise is neither normal distribution nor logistic
distribution, for example, t-distribution, simulation results
show the same conclusion. Thus, conclusions about the
power gain of the SV method compared to the LG and
oLG methods are robust to the logistic, normal and t
distribution of the underlying noise. In addition, if we are
interested in estimating the association effect size of SNP
on the phenotype, the noise variance parameter can also be
estimated along with other parameters using a generalized
expectation maximization algorithm (Godoy et al., 2011).
We have implemented the proposed new SV method in
an R package, which is available for free download from
http://www.stjuderesearch.org/site/depts/biostats/software.
The method can be easily applied to candidate gene asso-
ciation analysis, GWAS or NGS studies with hundreds or
thousands of individuals for ordered categorical phenotypes.
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